Modeling the Sequence of Brain Volumes by Local Mesh Models for Brain Decoding

نویسندگان

  • Itir Önal
  • Mete Ozay
  • Eda Mizrak
  • Ilke Öztekin
  • Fatos T. Yarman-Vural
چکیده

We represent the sequence of fMRI (Functional Magnetic Resonance Imaging) brain volumes recorded during a cognitive stimulus by a graph which consists of a set of local meshes. The corresponding cognitive process, encoded in the brain, is then represented by these meshes each of which is estimated assuming a linear relationship among the voxel time series in a predefined locality. First, we define the concept of locality in two neighborhood systems, namely, the spatial and functional neighborhoods. Then, we construct spatially and functionally local meshes around each voxel, called seed voxel, by connecting it either to its spatial or functional p-nearest neighbors. The mesh formed around a voxel is a directed sub-graph with a star topology, where the direction of the edges is taken towards the seed voxel at the center of the mesh. We represent the time series recorded at each seed voxel in terms of linear combination of the time series of its p-nearest neighbors in the mesh. The relationships between a seed voxel and its neighbors are represented by the edge weights of each mesh, and are estimated by solving a linear regression equation. The estimated mesh edge weights lead to a better representation of information in the brain for encoding and decoding of the cognitive tasks. We test our model on a visual object recognition and emotional memory retrieval experiments using Support Vector Machines that are trained using the mesh edge weights as features. In the experimental analysis, we observe that the edge weights of the spatial and functional meshes perform better than the state-of-the-art brain decoding models. Keywords—fMRI; voxel connectivity; brain decoding; object recognition; classification

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating fMRI data into 3D conventional radiotherapy treatmentplanning of brain tumors

Introduction: This study was aimed to investigate the beneficial effects of functional magnetic resonance imaging (fMRI) data in treatment planning for patients with CNS tumors in order to decrease the injury of functional regions of the brain followed by increase in life quality and survival of patients. This study pursues a novel approach in planning for the treatment of brai...

متن کامل

Finite element modeling of the human head under baton impact

Purpose: This research will try to predict damage probability and calculate the main stress resulted from baton impacts by finite element (FE) modeling of the human head considering skull texture, brain and cerebrospinal fluid.Materials and Methods: A three dimensional FE model of the skull-brain complex was constructed for simulating the baton impact. The FE analysis was carried out using ANSY...

متن کامل

Enhancing Local Linear Models Using Functional Connectivity for Brain State Decoding

The authors propose a statistical learning model for classifying cognitive processes based on distributed patterns of neural activation in the brain, acquired via functional magnetic resonance imaging (fMRI). In the proposed learning machine, local meshes are formed around each voxel. The distance between voxels in the mesh is determined by using functional neighborhood concept. In order to def...

متن کامل

Prediction of mental disorders after Mild Traumatic Brain Injury: principle component Approach

Introduction: In Processes Modeling, when there is relatively a high correlation between covariates, multicollinearity is created, and it leads to reduction in model's efficiency. In this study, by using principle component analysis, modification of the effect of multicolinearity in Artificial Neural Network (ANN) and Logistic Regression (LR) has been studied. Also, the effect of multicolineari...

متن کامل

Modeling Behavioral Brain Systems and Emotion Dysregulation with Psychological Vulnerability in Substance-Dependent Individuals in Recovery

Objective: The aim of this study was to investigate the modeling of behavioral brain systems and emotion dysregulation with psychological vulnerability in substance-dependent individuals in recovery. Method: The present study was descriptive-correlational of structural equation modeling type. The statistical population of this study consisted of all substance-dependent individuals in recovery i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.01067  شماره 

صفحات  -

تاریخ انتشار 2016